Impedance-based assay to evaluate potency of immunotherapy products

Juan Miguel Sánchez-Nieto
Analytical Development Scientist – Industrialisation team
About us

Part of a world-leading network of technology and innovation centres

Provide access to unique technical facilities and expertise to help adopt, develop and exploit innovations

Bridge the gap between businesses and academic research

Established by Innovate UK as a not-for-profit, independent centre

It is our vision for the UK to be a global leader in the development, delivery and commercialisation of cell and gene therapies.

Where businesses can start, grow and confidently develop advanced therapies, delivering them to patients rapidly and effectively.

For Research Use Only. Not for use in diagnostic procedures.
Our assets

Development centre
- 1,200m² purpose built centre
- Analytical characterisation
- Process development
- Viral vector
- Stem cell differentiation
- 10th floor integration & collaboration centre

Manufacturing centre
- 7,700m² manufacturing centre designed specifically for cell and gene therapies
- 12 segregated large clean room modules
- Secure supported collaboration model
- Centre of a cell and gene therapy cluster
- Expanded QC capacity and capability

For Research Use Only. Not for use in diagnostic procedures.
Potency assays for immunotherapies
Challenge: reduce time between product formulation and patient administration

Day 1
- Selection

Day 1/3
- Transduction

Day 1-10
- Expansion

Day 10
- Formulation

Identity
- Transduction efficiency
- Immunophenotype
- Appearance

Impurities
- Percentage non-CD3⁺ cells
- Large T antigen protein/DNA

Safety
- Genome viral copy number
- Sterility (EP 2.6.1)
- Mycoplasma (EP 2.6.7)
- Endotoxin (EP 2.6.14)
- Replication competent viruses

Potency
- Viable cell count
- CAR/TCR expression
- Cell killing activity
- Cytokine stimulation

For Research Use Only. Not for use in diagnostic procedures.
Current methods to evaluate T-cell potency

- **Chromium release**
 - Gold standard
 - Limitations:
 - Time – leakage
 - Safety – use of radioactive material
 - Cell requirements – high effector to target ratios | physiological relevance
Alternatives to Cr51 release assay

<table>
<thead>
<tr>
<th>Assay</th>
<th>Measure</th>
<th>Readout</th>
</tr>
</thead>
<tbody>
<tr>
<td>CytoTox 96<sup>®</sup></td>
<td>LDH</td>
<td>Absorbance</td>
</tr>
<tr>
<td>CellTiter-Glo<sup>®</sup></td>
<td>ATP</td>
<td>Luminescence</td>
</tr>
<tr>
<td>Calcein-AM</td>
<td>Dye release</td>
<td>Fluorescence</td>
</tr>
<tr>
<td>DELFIA<sup>®</sup> EuTDA</td>
<td>BATDA release</td>
<td>Fluorescence</td>
</tr>
<tr>
<td>Flow cytometry</td>
<td>Cytokine/cell death</td>
<td>Fluorescence</td>
</tr>
<tr>
<td>Luminex<sup>®</sup></td>
<td>Cytokine</td>
<td>Fluorescence</td>
</tr>
</tbody>
</table>

Luminex[®] is a trade mark of R&D Systems. DELFIA[®] is a trade mark of PerkinElmer. CytoTox 96[®] and CellTiter-Glo[®] are trade marks of Promega.
Solution: impedance – based potency assay

• Real Time Cell Analysis system:
 • Non-invasive system – electrical impedance
 • Label free
 • High throughput – 6x 96-well plates
 • Flexible
• Limitation:
 • Optimisation required for each target cell line
Use of the xCELLigence® MP to assess T-cell cytotoxicity

• Strategies followed for different types of immunotherapies:
 • T-cell receptor based therapies (TCR)
 • Non-adherent target cells
 • Adherent target cells
 • Chimeric Antigen Receptor (CAR)
 • Adherent target cells

xCELLigence® is a trade mark of ACEA Biosciences
How does the impedance-based potency assay work?
TCR based products
TCR mediated killing

CD8+ cell

CD8+ cell

CD8+ cell

CD8+ cell

CD8+ cell

Cancer cell

CD8

CD80/86

Ag

MHC (I)

CD28

4-1BB

4-1BBL

For Research Use Only. Not for use in diagnostic procedures.
Assay development

- Selection of a suitable target cell line
 - Cell lines to test:
 - CL1 and CL3 – melanoma cancer cell lines
 - CL2 – ovarian cancer cell line
 - Control cell line
 - Evaluation of optimal seeding density
 - Expression levels of HLA-A2

- Assay qualification
 - Instrument’s linearity
 - Correlation between cytolytic potential and cell index
 - Killing time 50
 - CI at a specific timepoint
 - Intermediate precision/repeatability

For Research Use Only. Not for use in diagnostic procedures.
Evaluation of optimal seeding density – effect of extracellular matrix

For Research Use Only. Not for use in diagnostic procedures.
Evaluation of optimal seeding density – effect of extracellular matrix

For Research Use Only. Not for use in diagnostic procedures.
Evaluation of optimal seeding density – effect of extracellular matrix

For Research Use Only. Not for use in diagnostic procedures.
Selection of the cell line to perform the killing assay

- Expression levels of MHC-1

Atzin-Méndez, J. A. et al. 2015

For Research Use Only. Not for use in diagnostic procedures.
Selection of the cell line to perform the killing assay

- Expression levels of MHC-I
CI profile

For Research Use Only. Not for use in diagnostic procedures.
Cell line selection

CL3

• Lower cell density: CI ~1
• Highest expression levels of HLA-A2 between the tested cell lines
• Relatively constant CI over time
 • Less non-specific killing observed

For Research Use Only. Not for use in diagnostic procedures.
For Research Use Only. Not for use in diagnostic procedures.
Instrument’s linearity

Linearity Exp.1

- **R square**: 0.9708

Linearity Exp.2

- **R square**: 0.9741

Linearity Exp.3

- **R square**: 0.9879

Residuals: Linear reg. of Linearity 1

Residuals: Linear reg. of Linearity 2

Residuals: Linear reg. of Linearity 3

For Research Use Only. Not for use in diagnostic procedures.
Correlation between cytolysis and cell index

2:1 Effector to target ratio

<table>
<thead>
<tr>
<th>% Transduced product</th>
<th>Number of Transduced cells</th>
<th>Number of non-transduced cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>25,000</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>20,000</td>
<td>5,000</td>
</tr>
<tr>
<td>60</td>
<td>15,000</td>
<td>10,000</td>
</tr>
<tr>
<td>40</td>
<td>10,000</td>
<td>15,000</td>
</tr>
<tr>
<td>20</td>
<td>5,000</td>
<td>20,000</td>
</tr>
<tr>
<td>5</td>
<td>1,250</td>
<td>23,750</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>25,000</td>
</tr>
</tbody>
</table>
Correlation between cytolysis and cell index

- KT50
- Time 420min
KT50: Correlation between cytolysis and cell index

- **KT50**
 - Time (min)
 - % of transduced material

- **CI at Time 420 min**
 - Normalised baseline-corrected Cell Index

<table>
<thead>
<tr>
<th>Exp. 1</th>
<th>Exp. 2</th>
<th>Exp. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>0.99</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Exponential R²

<table>
<thead>
<tr>
<th>Exp. 1</th>
<th>Exp. 2</th>
<th>Exp. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

For Research Use Only. Not for use in diagnostic procedures.
Specificity – CL3

For Research Use Only. Not for use in diagnostic procedures.
Specificity – CL2

Operator 1

- CL2 + Control T cells
- CL2 + Transduced T cells
- CL2 only

Operator 2

- CL2 + Control T cells NT
- CL2 + Transduced T cells
- CL2 only

For Research Use Only. Not for use in diagnostic procedures.
Intermediate precision and repeatability

Operators

For Research Use Only. Not for use in diagnostic procedures.
Non-adherent cell line
Optimisation of cell attachment – capture antibody

For Research Use Only. Not for use in diagnostic procedures.
Optimisation of cell attachment – cell density

For Research Use Only. Not for use in diagnostic procedures.
Optimisation of Effector:Target cell ratios for a TCR therapy

Assay outline:

1. Target cells are pulsed for 2 hours with peptide prior to plating
2. Target cells are plated and allowed to attach for 4 hours – impedance readings are initiated
3. Cells are washed prior to killing assay
4. Transduced T cells are added
5. Killing response is measured every 15 minutes for up to 24 hours
Comparability between impedance and flow cytometry – TCR therapy

5:1 effector/target

- Effector only
- Non-pulsed
- Non Specific 1
- Non Specific 2
- Specific Peptide

Viability %

- 100%
- 80%
- 60%
- 40%
- 20%

time (h)

- 0
- 5
- 10

8 hours

- Live
- Early apoptotic
- Late apoptotic
- Dead

For Research Use Only. Not for use in diagnostic procedures.
Correlation with impedance and quantitative image analysis

Target cells | Effector Cells | Dead cells
Summary

- TCR immunotherapy potency can be reliably measured using impedance spectroscopy
- We have shown two different methods to monitor T-cell cytotoxicity
 - Adherent cell lines
 - Non adherent cell lines
- Assay readout correlates with flow cytometry and image analysis
- The impedance assay is label free and provides kinetic data of cell killing
CAR-T cells
Chimeric Antigen Receptor (CAR) T cell therapies

For Research Use Only. Not for use in diagnostic procedures.
Challenges of targeting solid tumours

- Access to the tumour tissue
- Lack of appropriate target antigens
- Immunosuppressive tumour microenvironment
Tumour angiogenesis: potential therapeutic approach

Small tumor Sprouting capillary Growing tumor

Angiogenic factors

Nutrients from blood Metastatic spread
CLEC14A – tumour endothelial marker

Breast carcinoma

Liver carcinoma

Bladder carcinoma

Human endothelial marker (ULEX) CLEC14A Nuclei (DAPI)

Mura et al. Oncogene 31:293 (2012)
Reduction in tumour burden in RipTag2 mouse model
(F. Maione, E. Giraudo, Turin)
Large scale generation of mRNA CAR-T cells

Starting Material
Electroporator
Cell Culture
CD4/8 Isolation
Harvest

For Research Use Only. Not for use in diagnostic procedures.
Real time detection of product’s potency within 4h

For Research Use Only. Not for use in diagnostic procedures.
Persistence of potency over time

Cl at 20h

Normalized cell index vs. time for transfected, transduced, and target cells only.

IFN-gamma (pg/mL) vs. Granzyme B (pg/mL)

Bar chart showing IFN-gamma and Granzyme B levels in untransfected and transfected conditions.

For Research Use Only. Not for use in diagnostic procedures.
Summary

- TCR and CAR-T immunotherapy potency can be reliably measured using impedance spectroscopy.
- We have shown specificity of the assay independently of the therapy used.
- The impedance assay is label free and provides *kinetic data* of cell killing:
 - During assay
 - Over different periods of time
- This assay provides a *fast* and *high-throughput* alternative to current methodologies.

For Research Use Only. Not for use in diagnostic procedures.
Acknowledgements

<table>
<thead>
<tr>
<th>Institute of Immunology and Immunotherapy, University of Birmingham</th>
<th>Institute of Cardiovascular Sciences, University of Birmingham</th>
<th>CGT Catapult, London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Lee</td>
<td>Roy Bicknell</td>
<td>Juan Jose Guijarro-Leach</td>
</tr>
<tr>
<td>Joe Robinson</td>
<td>Zsuzsanna Nagy</td>
<td>Andrea Keogh</td>
</tr>
<tr>
<td>Xiaodong Zhuang</td>
<td></td>
<td>Mark Bell</td>
</tr>
<tr>
<td>Katharine Whitworth</td>
<td>Federica Maione</td>
<td>Mustafa Munye</td>
</tr>
<tr>
<td>Elizabeth Jinks</td>
<td>Enrico Giraudo</td>
<td>Stephen Shapka</td>
</tr>
<tr>
<td>Neeraj Jumbo</td>
<td></td>
<td>Carolina Pinto Ricardo</td>
</tr>
<tr>
<td>Baksho Kaul</td>
<td></td>
<td>Hamza Bhatti</td>
</tr>
<tr>
<td>Mike Bentley</td>
<td></td>
<td>Jaqueline Barry</td>
</tr>
<tr>
<td>Kristina Petrovic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonas Bystrom</td>
<td>David Gilham</td>
<td>Alex Chan</td>
</tr>
<tr>
<td>Maria Sharif</td>
<td></td>
<td>Davide Grandolfo</td>
</tr>
</tbody>
</table>

For Research Use Only. Not for use in diagnostic procedures.
Thank you
Cell and Gene Therapy Catapult is committed to ensuring high standards of research integrity and research best practice in the activities we carry out. We subscribe to the principles described in the UK concordat to support research integrity.